资讯 人工智能
此为临时链接,仅用于文章预览,将在时失效

机器学习小窍门:Python 帮你进行特征选择

作者:AI研习社-译站
2018/07/25 17:01

雷锋网按:本文为雷锋字幕组编译的技术博客,原标题 A Feature Selection Tool for Machine Learning in Python,作者为 William Koehrsen。

翻译 | 胡瑛皓、程炜       校对 |龙柯宇     整理 |  MY 


特征选择,也就是从数据集中找出并选择最有用特征的过程,是机器学习工作流中一个非常重要的步骤。不必要的特征降低了训练速度,降低了模型的可解释性,最重要的是降低了测试数据集的泛化能力。

在做机器学习问题的过程中,我们总是在重复应用一些特征选择方法,这很令人沮丧。因此我用 Python 建了一个特征选择类,代码已上传至 GitHub。这个 FeatureSelector 包含一些通用的特征选择方法:

  1. 缺失值比例高的特征 

  2. 共线 (高相关)特征 

  3. 决策树中的零贡献度特征 

  4. 低贡献度特征 

  5. 单值特征 

本文将通过一个机器学习数据集例子来展示如何使用 FeatureSelector。可以看到该工具如何快速实现这些方法,让机器学习工作流更高效。 

完整的代码可在 GitHub 上找到,欢迎各位任何形式的贡献。特征选择器在不断改进,它将根据社区的需要不断修正和完善!


样例数据集

本文将使用 Kaggle 的 Home Credit Default Risk 机器学习竞赛里的样本数据。(想参加比赛的可以看这篇文章)。 完整的数据集可以在此处下载, 本文将使用样本做演示用。

机器学习小窍门:Python 帮你进行特征选择

样本数据。TARGET 为分类标签

竞赛是一个监督分类问题。这是一个非常合适的数据集,因为它有很多缺失值、大量高度相关(共线)的特征以及许多无助于机器学习建模的不相关特征。

机器学习小窍门:Python 帮你进行特征选择


建立实例

为了建立一个 FeatureSelector 类的实例,我们需要输入一个结构化的数据集,其中行记录观测结果,列记录特征。有些方法中我们可以只使用特征来学习,但另外一些重要的方法也需要标签。由于这是一个监督分类的任务,我们会同时用到特征和标签。

(在 feature_selector.py 所在目录中执行以下代码)

机器学习小窍门:Python 帮你进行特征选择


方法说明

特征选择供有 5 个方法来找到需要剔除的特征。我们可以访问任意标识出的特征然后手工从数据集中剔除它们,或用特征选择器里的 remove 方法。 

本文将依次浏览这些定位特征的方法,并展示如何一次性执行这些方法。此外 FeatureSelector 还有一些绘图功能,因为在机器学习中可视化数据是非常关键的。


缺失值

第一个找到需要被剔除的特征的方法非常直接:缺失值比率超过指定阈值。以下代码可以定位出所有缺失值比例超过 60% 的特征(粗体为输出内容)。

机器学习小窍门:Python 帮你进行特征选择

我们可以从 dataframe 看到这些特征的缺失值比例:

机器学习小窍门:Python 帮你进行特征选择

机器学习小窍门:Python 帮你进行特征选择

可以访问 FeatureSelector 里的 ops 属性来看到这些被标记移除的特征。它存储为一个 Python dict,其中每一项以 list 形式存储特征名称。

机器学习小窍门:Python 帮你进行特征选择

最后,用以下命令绘制一下所有特征缺失值比例的分布情况:

机器学习小窍门:Python 帮你进行特征选择

机器学习小窍门:Python 帮你进行特征选择


共线特征

共线特征也就是那些互相之间高度相关的特征。由于其较高的方差和较低的可解释性,它们将导致测试集数据泛化能力变差。 

identify_collinear 方法基于指定的相关系数值,找到那些共线特征。对于每对相关的特征,程序识别出其中一个特征,并剔除它(因为只需要剔除其中一个):

机器学习小窍门:Python 帮你进行特征选择

可以用热力图简洁地可视化特征的相关性。图中显示了所有至少与一个特征的相关系数大于阈值的特征: fs.plot_collinear() 与之前方式类似,

机器学习小窍门:Python 帮你进行特征选择

机器学习小窍门:Python 帮你进行特征选择

在此之前,我们可通过 ops 字典访问整个高相关度的(将被剔除的)特征列表, 也可用 dataframe 方式查看那些高度相关的特征对。

机器学习小窍门:Python 帮你进行特征选择

机器学习小窍门:Python 帮你进行特征选择

 如果想直接了解整个数据集,我们也可以绘制数据集中所有特征的相关系数热力图。只要在方法中传入 plot_all = True:

机器学习小窍门:Python 帮你进行特征选择


零重要度特征 

前面两种方法可以用于任何结构的数据集。并且在给定阈值下,任何时候得到的结果都是一样的。接下来一种方法适用于有监督的机器学习。我们必须有用于训练的标签,结果也是不一定的。identify_zero_importance 函数根据 GBM 学习模型找到零重要度特征。

通过基于树的机器学习模型,比如 Boosting 集成方法,我们可以找到特征重要度。重要度的绝对值没有相对值重要。通过相对值,我们可以决定与任务相关性最强的特征。我们也可以使用特征重要度,去除零重要度特征完成特征选择。在基于树的模型中我们并不使用零重要度特征来分割各点,所以我们可以将它们去除而不影响模型性能。 

FeatureSelector 使用 GBM 从 LightGBM library 中找到特征重要度。运行 10 次以上 GBM 求平均得到特征重要性,从而减少方差。同时,模型使用验证集的 early stopping(有关闭选项),避免训练数据的过拟合。 

下面的代码调用这种方法,输出零重要度特征:

机器学习小窍门:Python 帮你进行特征选择

输入参数:

这时使用 plot_feature_importances 得到两张曲线图:

机器学习小窍门:Python 帮你进行特征选择

机器学习小窍门:Python 帮你进行特征选择

机器学习小窍门:Python 帮你进行特征选择

左边的 plot_n 是最重要特征(画出了重要性的归一化项,它们的和为 1)。右边的是累计的重要性相对于特征的个数,纵轴是累计重要度的 threshold。这个例子中是 99%。

对于基于重要度的方法,以下两点需要记住: 

这不应成为主要的问题(最重要的特征不会突然变成最不重要的),但它会改变一些特征的排序。它也可能影响到识别出的零重要度特征数。你并不需要对特征重要度每次变化的问题感到吃惊。

在特征去除阶段有去除任何独热编码特征的选项,然而如果在特征选择之后进行机器学习,我们必须对特征进行独热编码。


低重要度特征 

接下来的方法建立在零重要度函数上,它使用模型的特征重要度来进行之后的选择。identify_low_importance 函数找到最低重要度的特征,这些特征对特定的总重要度没有任何贡献。 

例如,下面的调用函数找到最低重要度的特征。它并不需要达到 99% 的总重要度: 

机器学习小窍门:Python 帮你进行特征选择

基于总重要度及这些信息的曲线,GBM 将很多特征判断为与学习无关。这种方法每次训练得到的结果并不相同。 

在 dataframe 中查看特征重要度: 

机器学习小窍门:Python 帮你进行特征选择

机器学习小窍门:Python 帮你进行特征选择

low_importance 方法来源于一种使用主成分分析(PCA)的方法。它通常只保留所需的主成分以将方差百分比保持在特定值上(比如 95%)。总重要度的百分比的计算也是基于这个想法。 

这种基于特征重要度的方法只在使用基于树的模型做预测时有用。除了具有随机性之外,这种基于重要度的方法是一个黑盒子。我们并不知道模型为什么将某种特征判断为无关。如果使用这些方法,将它们运行几次并观察结果如何变化。创建多个不同参数的数据集进行测试。


唯一值特征

最后一个是很基础的一种方法:找到任何有单一值的列。一个只有唯一值的特征无法用于机器学习,因为这个特征的方差为 0。比如,一个基于树的模型无法在只有一个值的特征上进行划分 (因为不能将观察对象分组)。

与其他方法不同,这里没有参数可以选择: 

机器学习小窍门:Python 帮你进行特征选择

我们可以画出每个分类唯一值的柱状图:

机器学习小窍门:Python 帮你进行特征选择

机器学习小窍门:Python 帮你进行特征选择

 需要记住的一点是默认在 Pandas 中计算唯一值之前先去掉非数元素(NaNs)。


去除特征 

一旦我们识别出需要去掉的特征,我们有两个选项来去掉它们。所有需要去掉的特征都存储在 FeatureSelector 的字典 ops 当中。我们可以使用这个清单来手动去掉这些特征,另一个选项是使用 remove 的内建函数。 

使用这种方法,我们使用 methods 来去掉特征。如果我们希望使用所有方法,我们只需要在函数中放入 methods = 'all'。

机器学习小窍门:Python 帮你进行特征选择

通过这种方法返回一个已经去除了特征的 datafram,同时也去除了在机器学习过程中创建的独热编码特征:

机器学习小窍门:Python 帮你进行特征选择

在进一步操作之前,先检查将要被去除的特征是一个好主意!原始的数据集被作为备份存储在 FeatureSelector 的 data 特性中。


一次运行所有方法

比起单独运行这些方法,我们可以使用 identify_all 来运行所有的方法。它为每种方法建立了一个参数字典:

机器学习小窍门:Python 帮你进行特征选择

由于我们重新运行了模型,你需要注意到总特征的个数将会变化,然后就可以调用 remove 函数来去除特征。


结论 

在训练机器学习模型之前,Feature Selector 类会执行一些常用操作来去除特征。它提供识别特征并去除的函数,并将之可视化。为了提高工作效率,可以单独或一次运行所有方法。 

missing,collinear和 single_unique 方法结果是确定的。而基于特征重要度的方法每次运行的结果都会变化。特征选择和机器学习很像,它们都需要大量经验,需要测试多种组合来找到最优答案。最好是在过程中尝试多种配置,特征选择器提供一种方法快速评估特征选择的参数。 

和往常一样,欢迎各位提出反馈和建设性的意见。我想强调,我正在 FeatureSelector 寻求帮助。任何人都可以在 GitHub 上做出贡献。对所有使用这个工具并提出的建议的人表示感谢!也可以通过推特 @koehrsen_will 和我联系。 


原文链接:https://towardsdatascience.com/a-feature-selection-tool-for-machine-learning-in-python-b64dd23710f0

机器学习小窍门:Python 帮你进行特征选择


雷锋网雷锋网 

长按图片保存图片,分享给好友或朋友圈

机器学习小窍门:Python 帮你进行特征选择

扫码查看文章

正在生成分享图...

取消
相关文章
Baidu
map