资讯 AI+
此为临时链接,仅用于文章预览,将在时失效

大讲堂 | 强化学习的鲁棒性问题

作者:AI研习社 编辑:杨强
2019/10/10 14:24

分享主题

鲁棒强化学习

 

分享背景

强化学习算法依赖大量采样的特性决定了需要首先在仿真环境中训练智能体策略再迁移到现实系统中。因此当仿真环境和现实系统出现不匹配时,策略的鲁棒性是影响强化学习算法能否实用的关键因素。本次公开课中,讲者将介绍华为伦敦研究所决策与推理团队在鲁棒强化学习方面的相关工作。


分享嘉宾

任航,伦敦帝国理工学院博士,任职于华为诺亚方舟实验室伦敦


分享提纲

 

分享时间

(北京时间 )  10月 10 日(星期四)  20:00

大讲堂 | 强化学习的鲁棒性问题

雷锋网雷锋网雷锋网

长按图片保存图片,分享给好友或朋友圈

大讲堂 | 强化学习的鲁棒性问题

扫码查看文章

正在生成分享图...

取消
相关文章
Baidu
map