| 雷峰网
您正在使用IE低版浏览器,为了您的雷峰网账号安全和更好的产品体验,强烈建议使用更快更安全的浏览器
此为临时链接,仅用于文章预览,将在时失效
人工智能 正文
发私信给camel
发送

0

NIPS 2017今天开启议程,谷歌科学家竟然组团去了450人,还都不是去玩的!

本文作者: camel 编辑:郭奕欣 2017-12-04 17:52 专题:NIPS 2017
导语:感觉NIPS 2017被他们包了~

据说,别人去NIPS 2017是这样的:

NIPS 2017今天开启议程,谷歌科学家竟然组团去了450人,还都不是去玩的!

谷歌去NIPS 2017是这样的:

 NIPS 2017今天开启议程,谷歌科学家竟然组团去了450人,还都不是去玩的!

雷锋网AI科技评论按:今天,人工智能领域本年度最后一个学术盛会、机器学习领域顶级会议、第31届神经信息处理系统大会(NIPS 2017)就要在加州长滩市开启了。(雷锋网AI科技评论记者也将亲临现场进行全程报道!)

谷歌作为钻石赞助商,今年共有450人去参加NIPS大会,而我们知道NIPS 2017的参会人数总共有5000+,所以如果你在会场,那么放眼望去,看到的每13个人差不多就有一个是谷歌的人,并且人家这些人还都不是来玩的。


一、活动情况

1、接收论文(Accepted Papers)

据雷锋网了解,今年NIPS会议共有3240篇投稿论文,其中678篇入选(20.9%),40篇orals,112篇spotlights。

在这些入选论文中,国内高校共有19篇论文入选;UC伯克利有16篇,斯坦福有20篇,MIT有20篇,而卡内基·梅隆大学则有高达32篇入选论文。是不是很牛逼?

说真的,并不!

谷歌有45篇入选论文,远超世界顶级的四大高校,更是远超太平洋西岸某一大国的所有高校之和。这里是谷歌入选论文列表:

A Meta-Learning Perspective on Cold-Start Recommendations for Items
Manasi Vartak, Hugo Larochelle, Arvind Thiagarajan

AdaGAN: Boosting Generative Models
Ilya Tolstikhin, Sylvain Gelly, Olivier Bousquet, Carl-Johann Simon-Gabriel, Bernhard Schölkopf

Deep Lattice Networks and Partial Monotonic Functions
Seungil You, David Ding, Kevin Canini, Jan Pfeifer, Maya Gupta

From which world is your graph
Cheng Li, Varun Kanade, Felix MF Wong, Zhenming Liu

Hiding Images in Plain Sight: Deep Steganography
Shumeet Baluja

Improved Graph Laplacian via Geometric Self-Consistency
Dominique Joncas, Marina Meila, James McQueen

Model-Powered Conditional Independence Test
Rajat Sen, Ananda Theertha Suresh, Karthikeyan Shanmugam, Alexandros Dimakis, Sanjay Shakkottai

Nonlinear random matrix theory for deep learning
Jeffrey Pennington, Pratik Worah

Resurrecting the sigmoid in deep learning through dynamical isometry: theory and practice
Jeffrey Pennington, Samuel Schoenholz, Surya Ganguli

SGD Learns the Conjugate Kernel Class of the Network
Amit Daniely

SVCCA: Singular Vector Canonical Correlation Analysis for Deep Learning Dynamics and Interpretability
Maithra Raghu, Justin Gilmer, Jason Yosinski, Jascha Sohl-Dickstein

Learning Hierarchical Information Flow with Recurrent Neural Modules
Danijar Hafner, Alexander Irpan, James Davidson, Nicolas Heess

Online Learning with Transductive Regret
Scott Yang, Mehryar Mohri

Acceleration and Averaging in Stochastic Descent Dynamics
Walid Krichene, Peter Bartlett

Parameter-Free Online Learning via Model Selection
Dylan J Foster, Satyen Kale, Mehryar Mohri, Karthik Sridharan

Dynamic Routing Between Capsules
Sara Sabour, Nicholas Frosst, Geoffrey E Hinton

Modulating early visual processing by language
Harm de Vries, Florian Strub, Jeremie Mary, Hugo Larochelle, Olivier Pietquin, Aaron C Courville

MarrNet: 3D Shape Reconstruction via 2.5D Sketches
Jiajun Wu, Yifan Wang, Tianfan Xue, Xingyuan Sun, Bill Freeman, Josh Tenenbaum

Affinity Clustering: Hierarchical Clustering at Scale
Mahsa Derakhshan, Soheil Behnezhad, Mohammadhossein Bateni, Vahab Mirrokni, MohammadTaghi Hajiaghayi, Silvio Lattanzi, Raimondas Kiveris

Asynchronous Parallel Coordinate Minimization for MAP Inference
Ofer Meshi, Alexander Schwing

Cold-Start Reinforcement Learning with Softmax Policy Gradient
Nan Ding, Radu Soricut

Filtering Variational Objectives
Chris J Maddison, Dieterich Lawson, George Tucker, Mohammad Norouzi, Nicolas Heess, Andriy Mnih, Yee Whye Teh, Arnaud Doucet

Multi-Armed Bandits with Metric Movement Costs
Tomer Koren, Roi Livni, Yishay Mansour

Multiscale Quantization for Fast Similarity Search
Xiang Wu, Ruiqi Guo, Ananda Theertha Suresh, Sanjiv Kumar, Daniel Holtmann-Rice, David Simcha, Felix Yu

Reducing Reparameterization Gradient Variance
Andrew Miller, Nicholas Foti, Alexander D'Amour, Ryan Adams

Statistical Cost Sharing
Eric Balkanski, Umar Syed, Sergei Vassilvitskii

The Unreasonable Effectiveness of Structured Random Orthogonal Embeddings
Krzysztof Choromanski, Mark Rowland, Adrian Weller

Value Prediction Network
Junhyuk Oh, Satinder Singh, Honglak Lee

REBAR: Low-variance, unbiased gradient estimates for discrete latent variable models
George Tucker, Andriy Mnih, Chris J Maddison, Dieterich Lawson, Jascha Sohl-Dickstein

Approximation and Convergence Properties of Generative Adversarial Learning
Shuang Liu, Olivier Bousquet, Kamalika Chaudhuri

Attention is All you Need
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, Illia Polosukhin

PASS-GLM: polynomial approximate sufficient statistics for scalable Bayesian GLM inference
Jonathan Huggins, Ryan Adams, Tamara Broderick

Repeated Inverse Reinforcement Learning
Kareem Amin, Nan Jiang, Satinder Singh

Fair Clustering Through Fairlets
Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, Sergei Vassilvitskii

Affine-Invariant Online Optimization and the Low-rank Experts Problem
Tomer Koren, Roi Livni

Batch Renormalization: Towards Reducing Minibatch Dependence in Batch-Normalized Models
Sergey Ioffe

Bridging the Gap Between Value and Policy Based Reinforcement Learning
Ofir Nachum, Mohammad Norouzi, Kelvin Xu, Dale Schuurmans

Discriminative State Space Models
Vitaly Kuznetsov, Mehryar Mohri

Dynamic Revenue Sharing
Santiago Balseiro, Max Lin, Vahab Mirrokni, Renato Leme, Song Zuo

Multi-view Matrix Factorization for Linear Dynamical System Estimation
Mahdi Karami, Martha White, Dale Schuurmans, Csaba Szepesvari

On Blackbox Backpropagation and Jacobian Sensing
Krzysztof Choromanski, Vikas Sindhwani

On the Consistency of Quick Shift
Heinrich Jiang

Revenue Optimization with Approximate Bid Predictions
Andres Munoz, Sergei Vassilvitskii

Shape and Material from Sound
Zhoutong Zhang, Qiujia Li, Zhengjia Huang, Jiajun Wu, Josh Tenenbaum, Bill Freeman

Learning to See Physics via Visual De-animation
Jiajun Wu, Erika Lu, Pushmeet Kohli, Bill Freeman, Josh Tenenbaum

2、Invited talk

NIPS 2017在4-7日期间安排了7场大会报告,其中谷歌作为钻石赞助商,其首席科学家John Platt将在4日下午5:30-6:20做首场invited talk:《Powering the next 100 years》,来讲述谷歌如何使用机器学习来解决未来的能源问题。他是这么说的:

我的梦想就是让地球上的每一个人每年都能够用上和美国普通人一样多的能源。如果实现这个目标,那么在2100年,就需要0.2 x 10^24焦耳的能量,这是非常巨大的。

那么人类文明如何能够获得这么多能量而同时不会导致二氧化碳含量剧增呢?为了回答这个问题,我首先要深入到电力经济学,以了解当前零碳技术的局限性。这些限制也是导致我们仍然在研究如何开发零碳技术(例如核聚变)的原因。对于核聚变,我将说明为什么发展了近70年,对它的开发仍然是一个棘手的问题,而为什么在不久的将来又可能会得到一个很好的解决方案。我还将解释我们如何使用机器学习来优化、加速核聚变的研究。

啥,机器学习+核聚变?是的,是不是很突破脑洞极限?

3、会议展示(Conference Demos)

谷歌在NIPS上将有两场会议展示:

1)电子屏保具有高效、强健的移动视觉

Electronic Screen Protector with Efficient and Robust Mobile Vision
Hee Jung Ryu, Florian Schroff

在手机上通过人脸进行身份验证,探索的也有一段时间了。但是如何在有很多人的拥挤空间中确定哪张脸是你的呢?

谷歌将在Demos中展示他们开发的DetectGazeNet,识别你只需47ms。

2)Magenta和deeplearn.js:实时控制浏览器中的深度生成音乐模型

Magenta and deeplearn.js: Real-time Control of DeepGenerative Music Models in the Browser
Curtis Hawthorne, Ian Simon, Adam Roberts, Jesse Engel, Daniel Smilkov, Nikhil Thorat, Douglas Eck

用深度学习来创作音乐的技术现在越来越成熟了,谷歌的团队将展示如何在浏览器的javascript环境中运行deeplearn.js,从而让用户实时控制这些模型的生成。只需要一个浏览器,自己也能生产音乐,有没有很高端?

4、workshops

所谓workshops,就是在某一主题下若干人一起进行密集讨论的小会。NIPS 2017在8、9号两天一共安排了53个Workshops。谷歌将参加其中的28个。

那么这和自己有什么关系呢?只能说,谷歌的众多大神将在这些workshops闪亮登场,其中就包括那位女神(微笑)。来,看看都认识哪些人……

6th Workshop on Automated Knowledge Base Construction (AKBC) 2017
Program Committee includes: Arvind Neelakanta
Authors include: Jiazhong Nie, Ni Lao

Acting and Interacting in the Real World: Challenges in Robot Learning
Invited Speakers include: Pierre Sermanet

Advances in Approximate Bayesian Inference
Panel moderator: Matthew D. Hoffman

Conversational AI - Today's Practice and Tomorrow's Potential
Invited Speakers include: Matthew Henderson, Dilek Hakkani-Tur
Organizers include: Larry Heck

Extreme Classification: Multi-class and Multi-label Learning in Extremely Large Label Spaces
Invited Speakers include: Ed Chi, Mehryar Mohri

Learning in the Presence of Strategic Behavior
Invited Speakers include: Mehryar Mohri
Presenters include: Andres Munoz Medina, Sebastien Lahaie, Sergei Vassilvitskii, Balasubramanian Sivan

Learning on Distributions, Functions, Graphs and Groups
Invited speakers include: Corinna Cortes

Machine Deception
Organizers include: Ian Goodfellow
Invited Speakers include: Jacob Buckman, Aurko Roy, Colin Raffel, Ian Goodfellow

Machine Learning and Computer Security
Invited Speakers include: Ian Goodfellow
Organizers include: Nicolas Papernot
Authors include: Jacob Buckman, Aurko Roy, Colin Raffel, Ian Goodfellow

Machine Learning for Creativity and Design
Keynote Speakers include: Ian Goodfellow
Organizers include: Doug Eck, David Ha

Machine Learning for Audio Signal Processing (ML4Audio)
Authors include: Aren Jansen, Manoj Plakal, Dan Ellis, Shawn Hershey, Channing Moore, Rif A. Saurous, Yuxuan Wang, RJ Skerry-Ryan, Ying Xiao, Daisy Stanton, Joel Shor, Eric Batternberg, Rob Clark

Machine Learning for Health (ML4H)
Organizers include: Jasper Snoek, Alex Wiltschko
Keynote: Fei-Fei Li

NIPS Time Series Workshop 2017
Organizers include: Vitaly Kuznetsov
Authors include: Brendan Jou

OPT 2017: Optimization for Machine Learning
Organizers include: Sashank Reddi

ML Systems Workshop
Invited Speakers include: Rajat Monga, Alexander Mordvintsev, Chris Olah, Jeff Dean
Authors include: Alex Beutel, Tim Kraska, Ed H. Chi, D. Scully, Michael Terry

Aligned Artificial Intelligence
Invited Speakers include: Ian Goodfellow

Bayesian Deep Learning
Organizers include: Kevin Murphy
Invited speakers include: Nal Kalchbrenner, Matthew D. Hoffman

BigNeuro 2017
Invited speakers include: Viren Jain

Cognitively Informed Artificial Intelligence: Insights From Natural Intelligence
Authors include: Jiazhong Nie, Ni Lao

Deep Learning At Supercomputer Scale
Organizers include: Erich Elsen, Zak Stone, Brennan Saeta, Danijar Haffner

Deep Learning: Bridging Theory and Practice
Invited Speakers include: Ian Goodfellow

Interpreting, Explaining and Visualizing Deep Learning
Invited Speakers include: Been Kim, Honglak Lee
Authors include: Pieter Kinderman, Sara Hooker, Dumitru Erhan, Been Kim

Learning Disentangled Features: from Perception to Control
Organizers include: Honglak Lee
Authors include: Jasmine Hsu, Arkanath Pathak, Abhinav Gupta, James Davidson, Honglak Lee

Learning with Limited Labeled Data: Weak Supervision and Beyond
Invited Speakers include: Ian Goodfellow

Machine Learning on the Phone and other Consumer Devices
Invited Speakers include: Rajat Monga
Organizers include: Hrishikesh Aradhye
Authors include: Suyog Gupta, Sujith Ravi

Optimal Transport and Machine Learning
Organizers include: Olivier Bousquet

The future of gradient-based machine learning software & techniques
Organizers include: Alex Wiltschko, Bart van Merriënboer

Workshop on Meta-Learning
Organizers include: Hugo Larochelle
Panelists include: Samy Bengio
Authors include: Aliaksei Severyn, Sascha Rothe

5、座谈会(Symposiums)

NIPS 2017座谈会共4场(12月7日),其中3场有谷歌大牛参与。

1)深化强化学习研讨会

Deep Reinforcement Learning Symposium

Authors include: Benjamin Eysenbach, Shane Gu, Julian Ibarz, Sergey Levine

2)可解释的机器学习

Interpretable Machine Learning

Authors include: Minmin Chen

3)元学习

Metalearning

Organizers include: Quoc V Le

可以说,其中的每一个都是机器学习领域中深之又深的问题。诸位大神们对此的见解或许能刷新自己对机器学习的认识。

NIPS 2017今天开启议程,谷歌科学家竟然组团去了450人,还都不是去玩的!

哦,对了,另外一场座谈会是:智力的种类 - 类型、测试和满足社会的需求(Kinds Of Intelligence: Types, Tests and Meeting The Needs of Society)

6、比赛(Competitions)

1)对抗攻击防御

Adversarial Attacks and Defences

Organizers include: Alexey Kurakin, Ian Goodfellow, Samy Bengio

2)IV竞争:分类临床可操作的基因突变

Competition IV: Classifying Clinically Actionable Genetic Mutations

Organizers include: Wendy Kan

7、研讨会(Tutorial)

NIPS 2017共有9场研讨会,谷歌只参加了其中之一:机器学习中的公平性(Fairness in Machine Learning)

Fairness in Machine Learning
Solon Barocas, Moritz Hardt


二、有哪些大牛

Samy Bengio

NIPS 2017今天开启议程,谷歌科学家竟然组团去了450人,还都不是去玩的!

谷歌大脑的研究科学家Samy Bengio是这届大会的程序委员会主席(Program Chair),同时也将参加元学习的研讨会(Workshop on Meta-Learning)以及组织“敌对攻击和防御”(Adversarial Attacks and Defences)的比赛。

Workshop on Meta-Learning

Panelists include: Samy Bengio


Competitions

Adversarial Attacks and Defences

Organizers include: Alexey Kurakin, Ian Goodfellow, Samy Bengio

Ian Goodfellow

NIPS 2017今天开启议程,谷歌科学家竟然组团去了450人,还都不是去玩的!

Ian Goodfellow是本届大会的领域主席。由他组织了“机器欺骗”(Machine Deception)的研讨会,此外他还将在一系列研讨会中做特邀报告/keynote 报告:

Machine Deception

Organizers: Ian Goodfellow

Invited Speakers include: Ian Goodfellow

 

Machine Learning for Creativity and Design

Keynote Speakers include: Ian Goodfellow

 

Machine Learning and Computer Security

Invited Speakers include: Ian Goodfellow

 

Aligned Artificial Intelligence

Invited Speakers include: Ian Goodfellow

 

Deep Learning: Bridging Theory and Practice

Invited Speakers include: Ian Goodfellow

 

Learning with Limited Labeled Data: Weak Supervision and Beyond

Invited Speakers include: Ian Goodfellow

除此之外,他还将和Samy Bengio、Alexey Kurakin等人共同组织“对抗攻击防御”(Adversarial Attacks and Defences)的比赛,这个比赛也是Ian Goodfellow所力推的。

Fei-Fei Li

NIPS 2017今天开启议程,谷歌科学家竟然组团去了450人,还都不是去玩的!

作为国内诸多研究学子心目中的女神,李飞飞在NIPS上的活动相比于前面两位大神则显得有点少,她将出现在8日的这个研讨会中:

Machine Learning for Health (ML4H)

Organizers include: Jasper Snoek, Alex Wiltschko

Keynote: Fei-Fei Li

记着,中午12点整开讲。

Geoffrey E Hinton

NIPS 2017今天开启议程,谷歌科学家竟然组团去了450人,还都不是去玩的!

Hinton在本次大会上甚至比李飞飞还要低调——只有入选的一篇论文,就是那个火爆一时的《Dynamic Routing Between Capsules》。然而,这篇论文甚至连oral都不是,只有一个5分钟的spotlight。

Dynamic Routing Between Capsules

Sara Sabour, Nicholas Frosst, Geoffrey E Hinton

注意了,5日下午4: 20-6: 00,Hall A。为了聆听胶囊理论,估计这个会厅会挤爆头!

去,要尽早!

相关文章:

如何提高NIPS论文命中率?这里有一份详细的分析

NIPS 2017录用结果全公布,清华北大10篇,BAT 4篇(附详细名单)

NIPS 2017美国四大名校霸屏,92篇论文抢先看 | NIPS 2017

堪比春运!NIPS 门票一小时内!统统!卖完了!

NIPS 2017 腾讯AI Lab 八篇论文入选,含1篇Oral

NIPS 2017录用论文先睹为快!GAIR大讲堂NIPS清华专场精彩回顾

大二少年的炼丹入门之路:专访NIPS 2017“Learning to Run” 比赛亚军黄哲威 | NIPS 2017

NIPS 2017即将开幕,哪些热点值得关注?

DeepMind 16篇NIPS 2017论文,全部信息都在这里了 | NIPS 2017

雷峰网原创文章,未经授权禁止转载。详情见转载须知

NIPS 2017今天开启议程,谷歌科学家竟然组团去了450人,还都不是去玩的!

分享:
相关文章
当月热门文章
最新文章
请填写申请人资料
姓名
电话
邮箱
微信号
作品链接
个人简介
为了您的账户安全,请验证邮箱
您的邮箱还未验证,完成可获20积分哟!
请验证您的邮箱
立即验证
完善账号信息
您的账号已经绑定,现在您可以设置密码以方便用邮箱登录
立即设置 以后再说
Baidu
map