您正在使用IE低版浏览器,为了您的雷峰网账号安全和更好的产品体验,强烈建议使用更快更安全的浏览器
此为临时链接,仅用于文章预览,将在时失效
人工智能开发者 正文
发私信给AI研习社
发送

0

PyTorch 的预训练,是时候学习一下了

本文作者: AI研习社 编辑:贾智龙 2017-05-02 18:10
导语:PyTorch又简洁又快,你试过么?

前言

最近使用 PyTorch 感觉妙不可言,有种当初使用 Keras 的快感,而且速度还不慢。各种设计直接简洁,方便研究,比 tensorflow 的臃肿好多了。今天让我们来谈谈 PyTorch 的预训练,主要是自己写代码的经验以及论坛 PyTorch Forums上的一些回答的总结整理。

直接加载预训练模型

如果我们使用的模型和原模型完全一样,那么我们可以直接加载别人训练好的模型:

my_resnet = MyResNet(*args, **kwargs)
my_resnet.load_state_dict(torch.load("my_resnet.pth"))

当然这样的加载方法是基于 PyTorch 推荐的存储模型的方法:

torch.save(my_resnet.state_dict(), "my_resnet.pth")

还有第二种加载方法:

my_resnet = torch.load("my_resnet.pth")

加载部分预训练模型

其实大多数时候我们需要根据我们的任务调节我们的模型,所以很难保证模型和公开的模型完全一样,但是预训练模型的参数确实有助于提高训练的准确率,为了结合二者的优点,就需要我们加载部分预训练模型。

pretrained_dict = model_zoo.load_url(model_urls['resnet152'])

model_dict = model.state_dict()

# 将pretrained_dict里不属于model_dict的键剔除掉

pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}

# 更新现有的model_dict

model_dict.update(pretrained_dict)

# 加载我们真正需要的state_dict

model.load_state_dict(model_dict)

因为需要剔除原模型中不匹配的键,也就是层的名字,所以我们的新模型改变了的层需要和原模型对应层的名字不一样,比如:resnet 最后一层的名字是 fc(PyTorch 中),那么我们修改过的 resnet 的最后一层就不能取这个名字,可以叫 fc_

微改基础模型预训练

对于改动比较大的模型,我们可能需要自己实现一下再加载别人的预训练参数。但是,对于一些基本模型 PyTorch 中已经有了,而且我只想进行一些小的改动那么怎么办呢?难道我又去实现一遍吗?当然不是。

我们首先看看怎么进行微改模型。

微改基础模型

PyTorch 中的 torchvision 里已经有很多常用的模型了,可以直接调用:

  • AlexNet

  • VGG

  • ResNet

  • SqueezeNet

  • DenseNet

import torchvision.models as models

resnet18 = models.resnet18()

alexnet = models.alexnet()

squeezenet = models.squeezenet1_0()

densenet = models.densenet_161()

但是对于我们的任务而言有些层并不是直接能用,需要我们微微改一下,比如,resnet 最后的全连接层是分 1000 类,而我们只有 21 类;又比如,resnet 第一层卷积接收的通道是 3, 我们可能输入图片的通道是 4,那么可以通过以下方法修改:

resnet.conv1 = nn.Conv2d(4, 64, kernel_size=7, stride=2, padding=3, bias=False)

resnet.fc = nn.Linear(2048, 21)

简单预训练

模型已经改完了,接下来我们就进行简单预训练吧。
我们先从 torchvision 中调用基本模型,加载预训练模型,然后,重点来了,将其中的层直接替换为我们需要的层即可

resnet = torchvision.models.resnet152(pretrained=True)

# 原本为1000类,改为10类

resnet.fc = torch.nn.Linear(2048, 10)

其中使用了 pretrained 参数,会直接加载预训练模型,内部实现和前文提到的加载预训练的方法一样。因为是先加载的预训练参数,相当于模型中已经有参数了,所以替换掉最后一层即可。OK!

雷锋网按:本文作者ycszen,文章原载于作者的知乎专栏


实战特训:远场语音交互技术  

智能音箱这么火,听声智科技CTO教你深入解析AI设备语音交互关键技术!

课程链接:http://www.mooc.ai/course/80

加入AI慕课学院人工智能学习交流QQ群:624413030,与AI同行一起交流成长

雷峰网版权文章,未经授权禁止转载。详情见转载须知

PyTorch 的预训练,是时候学习一下了

分享:
相关文章

编辑

聚焦数据科学,连接 AI 开发者。更多精彩内容,请访问:yanxishe.com
当月热门文章
最新文章
请填写申请人资料
姓名
电话
邮箱
微信号
作品链接
个人简介
为了您的账户安全,请验证邮箱
您的邮箱还未验证,完成可获20积分哟!
请验证您的邮箱
立即验证
完善账号信息
您的账号已经绑定,现在您可以设置密码以方便用邮箱登录
立即设置 以后再说
Baidu
map