您正在使用IE低版浏览器,为了您的雷峰网账号安全和更好的产品体验,强烈建议使用更快更安全的浏览器
此为临时链接,仅用于文章预览,将在时失效
人工智能学术 正文
发私信给杨晓凡
发送

1

和清华大学自然语言处理与社会人文计算实验室一起读机器翻译论文

本文作者: 杨晓凡 2019-02-08 18:16
导语:论文海中一盏灯

雷锋网 AI 科技评论按:在生产和经济高度全球化的今天,机器翻译(Machine Translation)是人类面对外语时最渴望拥有的工具,也是神经网络带来最大变革的人工智能问题之一。

从最早的基于规则的机器翻译,到基于概率的机器翻译,再到现在的基于神经网络的机器翻译,机器学习和语言学的研究人员们一起经历了几十年的历程。如今的机器翻译系统虽然还算不上尽善尽美,但以谷歌翻译、百度翻译为代表的,使用神经机器翻译技术的大规模开放使用的翻译系统,已经可以时不时地给出一些流畅、明了的双语互译结果了。

当然了,在神经网络/深度学习的冲击之下,我们也不免看到这样的调侃:“团队里每开除一个语言学家,翻译模型的准确率就可以再提升一点。”在越来越大的语料库、越来越多的模型设计和训练技巧的帮助下,来自语言学领域的指导带来的提升远不如机器学习领域的新技术成果、甚至已有技术成果的好的实现带来的提升大。雷锋网 AI 科技评论的读者们相信也有这样的感觉。

机器翻译,尤其是神经机器翻译(neural machine translation,NMT)也是清华大学自然语言处理与社会人文计算实验室重点关注的研究课题之一。为了便于自己研究,也给这个课题的其他研究人员提供参考和指引,清华大学自然语言处理与社会人文计算实验室机器翻译小组在 GitHub 上维护着一份神经机器翻译论文清单,包含了这个领域内他们认为起到重要作用的研究论文。

列表中的神经机器翻译论文划分为了模型架构、注意力机制、开放词库、训练目标、解码、低语言资源翻译、先验知识集成、文档级别翻译、鲁棒性、可视化和可解释性、语言学解释、公平性和多样性、效率、语音翻译、多模态、集成和重新排序、预训练、领域适应、质量估计、以人为中心的神经机器翻译、单词翻译及双语专用语翻译、诗歌翻译等主题,内容十分全面细致。除此之外,他们也列出了 10 篇必读论文。

这 10 篇必读论文是:

  • Peter E. Brown, Stephen A. Della Pietra, Vincent J. Della Pietra, and Robert L. Mercer. 1993. The Mathematics of Statistical Machine Translation: Parameter Estimation. Computational Linguistics. (Citation: 4,965)

  • Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. BLEU: a Method for Automatic Evaluation of Machine Translation. In Proceedings of ACL 2002. (Citation: 8,507)

  • Philipp Koehn, Franz J. Och, and Daniel Marcu. 2003. Statistical Phrase-Based Translation. In Proceedings of NAACL 2003. (Citation: 3,514)

  • Franz Josef Och. 2003. Minimum Error Rate Training in Statistical Machine Translation. In Proceedings of ACL 2003. (Citation: 2,982)

  • David Chiang. 2007. Hierarchical Phrase-Based Translation. Computational Linguistics. (Citation: 1,192)

  • Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to Sequence Learning with Neural Networks. In Proceedings of NIPS 2014. (Citation: 5,428)

  • Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural Machine Translation by Jointly Learning to Align and Translate. In Proceedings of ICLR 2015. (Citation: 5,572)

  • Diederik P. Kingma, Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization. In Proceedings of ICLR 2015. (Citation: 16,572)

  • Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Neural Machine Translation of Rare Words with Subword Units. In Proceedings of ACL 2016. (Citation: 789)

  • Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All You Need. In Proceedings of NIPS 2017. (Citation: 1,047)

论文列表具体内容请见:https://github.com/THUNLP-MT/MT-Reading-List

另外,在清华大学自然语言处理与社会人文计算实验室机器翻译小组的 GitHub 页面还可以看到他们的开源神经机器翻译工具包 THUMT (https://github.com/THUNLP-MT/THUMT  )。

祝各位阅读论文愉快。

雷锋网 AI 科技评论报道。

雷峰网原创文章,未经授权禁止转载。详情见转载须知

和清华大学自然语言处理与社会人文计算实验室一起读机器翻译论文

分享:
相关文章

读论文为生

日常笑点滴,学术死脑筋
当月热门文章
最新文章
请填写申请人资料
姓名
电话
邮箱
微信号
作品链接
个人简介
为了您的账户安全,请验证邮箱
您的邮箱还未验证,完成可获20积分哟!
请验证您的邮箱
立即验证
完善账号信息
您的账号已经绑定,现在您可以设置密码以方便用邮箱登录
立即设置 以后再说
Baidu
map